Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis.

نویسندگان

  • Hideo Kimura
  • Hiroyasu Esumi
چکیده

Physiologically, angiogenesis is tightly regulated, or otherwise it leads to pathological processes, such as tumors, inflammatory diseases, gynecological diseases and diabetic retinopathy. The vascular endothelial growth factor (VEGF) is a potent and critical inducer of angiogenesis. The VEGF gene expression is regulated by a variety of stimuli. Hypoxia is one of the most potent inducers of the VEGF expression. The hypoxia inducible factor 1 (HIF-1) plays as a key transcription factor in hypoxia-mediated VEGF gene upregulation. Nitric oxide (NO) as well as hypoxia is reported to upregulate the VEGF gene by enhancing HIF-1 activity. The Akt/protein kinase B (PKB) pathway may be involved in NO-mediated HIF-1 activation in limited cell lines. There are some reports of negative effects of NO on HIF-1 and VEGF activity. These conflicting data of NO effects may be attributed mainly to the amount of released NO. Indeed, NO can be a positive or negative modulator of the VEGF gene under the same conditions simply by changing its amounts. The VEGF-mediated angiogenesis requires NO production from activated endothelial NO synthase (eNOS). Activation of eNOS by VEGF involves several pathways including Akt/PKB, Ca(2+)/calmodulin, and protein kinase C. The NO-mediated VEGF expression can be regulated by HIF-1 and heme oxygenase 1 (HO-1) activity, and the VEGF-mediated NO production by eNOS can be also modulated by HIF-1 and HO-1 activity, depending upon the amount of produced NO. These reciprocal relations between NO and VEGF may contribute to regulated angiogenesis in normal tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Effects of Graphene Oxide and Vascular Endothelial Growth Factor Immobilized in Polycaprolactone Nanofiber as a Candidate for Diabetic Wound Healing

   Background & Objective: The combination of two or more therapeutic agents and their synergetic impacts can be therapeutically effective against multifactorial diseases, such as diabetic foot ulcers. This study demonstrates the application of a nanofiber-based drug delivery system with a controlled release of the growth factor. Various studies have shown that vascular endothelial growth facto...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Vascular endothelial growth factor regulation of Weibel-Palade–body exocytosis

Vascular endothelial growth factor (VEGF) not only regulates angiogenesis, vascular permeability, and vasodilation but also promotes vascular inflammation. However, the molecular basis for the proinflammatory effects of VEGF is not understood. We now show that VEGF activates endothelial cell exocytosis of WeibelPalade bodies, releasing vasoactive substances capable of causing vascular thrombosi...

متن کامل

miRNAs in vascular integrity

Endothelial cells (ECs) are confirmed as important regulators of vascular integrity, particularly in relation to angiogenesis, wound repair post-injury, and during embryogenesis. Futher, miRNAs have been implicated in EC function and proliferation. Moreover, knockdown of these miRNAs resulted in altered expressions of several important regulators of endothelial biology and angiogenesis includin...

متن کامل

Vascular endothelial growth factor regulation of Weibel-Palade-body exocytosis.

Vascular endothelial growth factor (VEGF) not only regulates angiogenesis, vascular permeability, and vasodilation but also promotes vascular inflammation. However, the molecular basis for the proinflammatory effects of VEGF is not understood. We now show that VEGF activates endothelial cell exocytosis of Weibel-Palade bodies, releasing vasoactive substances capable of causing vascular thrombos...

متن کامل

Nitric oxide and angiogenesis.

Endothelium-derived nitric oxide (NO) is a mediator of angiogenesis. Vascular endothelial growth factor (VEGF) stimulates the release of NO from cultured human umbilical venous endothelial cells and upregulates the expression of nitric oxide synthase (NOS).1,2 Segments of rabbit thoracic aorta release NO in response to VEGF; preincubation with L-arginine increases basal and VEGFstimulated NO re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 50 1  شماره 

صفحات  -

تاریخ انتشار 2003